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Abstract 
 

Sparse Matrix-Vector Multiplication (SpMV) is an 

important computational kernel in scientific 

applications that tends to perform poorly on modern 

processors because of irregular memory accesses. 

GPU have evolved into a very attractive hardware 

platform for general purpose computations due to their 

high floating-point computation performance, which 

results in that GPGPU becomes the hot and popular 

topic in HPC. Therefore, we need to parallelize and 

optimize SpMV on GPGPU to get a better performance. 

In this paper, we studied the register-level blocking 

algorithm and the heuristic algorithm to optimize 

SpMV performance on GPGPU. Based on AMD 

Stream Computing, We propose an automatic 

performance tuning SpMV software package on 

GPGPU, with its name GOSpMV. Experimental results 

on AMD Radeon HD 3690 shows that, compared with 

the CSR format SpMV implementation on CPU, our 

GOSpMV can achieve an average speedup with 3.11 

and the max speedup is 5.95. 

Keywords: SpMV, self adapting algorithm, 

heuristic-register blocking algorithm, GPGPU, 

AMD Stream Computing 

 

1. Introduction 
 

Sparse Matrix-Vector Multiplication (SpMV) is one 

of the most important kernels that are widely used in a 

lot of scientific applications, such as PDE solver, 

image processing and the simulation of a large variety 

of physical, financial, social etc. SpMV performs 

poorly on modern processors because of its low 

computation-to-memory-access ratio and irregular 

memory access patterns, and the deeper memory 

hierarchy makes optimization even more difficult to 

perform. 

The rapid evolution of GPUs in performance, 

architecture and programmability can provide 

application potential beyond their primary purpose of 

graphics processing. GPU-based general-purpose 

computing (GPGPU, General-Purpose Computation on 

GPU) refers to the use of the graphics card to achieve 

general computing, rather than simply drawing [1]. 

Graphic processing units (GPU) have evolved into a 

very attractive hardware platform for general purpose 

computations due to their extremely high floating-point 

processing performance, huge memory bandwidth and 

their comparatively energy low cost. 

AMD Stream Computing [2] is the GPGPU solution 

on AMD hardware. It could be applied for financial 

analysis, seismic migration analysis, and life sciences 

applications. GPUs such as AMD RV770 can achieve 

single-precision 1Tera Flops, which is much faster than 

the traditional CPU computing platform. GPGPU has 

the natural advantage of multithreading in parallel 

computing. Therefore, how to parallelize and optimize 

SpMV on GPGPUs has become very important issue. 

The rest of this paper is organized as follows: In 

section 2 we present a brief overview of related work 

about SpMV and GPGPU; In section 3 we propose the 

architecture and module details of GOSpMV; In 

section 4 we perform experiments with 8 sparse 

matrices selected from different application area, and 

analyze their performance; Section 5 is our conclusions 

and the future work. 

 

2. Related Work 
 

2.1. Introduction to SpMV Algorithms 
 

We consider the SpMV operation y=y+Ax, if y is 

initialized with 0, the SpMV becomes y=Ax. Here A is 

an m×n sparse matrix with nz non-zero elements. The x 

and y are dense vectors.  
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The most frequently applied storage format for 

sparse matrices is the Compressed Sparse Row (CSR) 

format. The nz non-zero elements are stored in row-

major order contiguously in memory. It needs three 

arrays as follows: 

A_val[nz]: stores the value of each non-zero element 

in the sparse matrix; 

A_col[nz]: contains all column indices of non-zero 

element in the sparse matrix; 

A_ptr[m+1]: stores indices indicating the location in 

A_val[nz] and A_col[nz] of the first element of each 

row, and A_ptr[m]=nz (the index values of A_ptr start 

at 0). 

The SpMV in CSR format is shown in Figure 1.  

 

for(i=0;i<m;i++) 

{ 

value = y[i]; 

for (j = A_ptr[i];j<A_ptr[i+1];j++) 

value = value + A_val[j]*x[A_col[j]]; 

y[i] = value; 

} 

Figure 1：SpMV in CSR format 

 

In our paper, we use Blocked Compressed Sparse 

Row (BCSR) format, which is blocked variant of CSR. 

It divides the matrix A into some r c  blocks and 

stores every block sequentially. If a block has only a 

part of non-zeros element, we should fill the other 

location with 0. Therefore, the 0 values should be 

stored explicitly. It also needs three arrays as follows: 

A_val: stores the value of every block sequentially; 

A_col: records the column index of the first non-

zeros element of every block, every block only needs 

one column index; 

A_ptr: stores indices indicating the location of the 

first block of each block row. 

 

2.2. Performance Optimization of SpMV on 

CPU 
 

There are many existing SpMV optimization 

techniques, including Register Blocking [3-7], Cache 

Blocking [3,4,8,9], Multi-vector Technology [4], 

Symmetric Structure [6], Diagonal Technology [6], 

Re-arrangement [6], and so on. SPARSITY package [4] 

optimized the SpMV core and solved the SpMV and 

SpMM with automatic optimization technology. Based 

on SPARSITY, the BeBOP (Berkeley Benchmarking 

and OPtimization Group) Group [10] developed OSKI 

(The Optimized Sparse Kernel Interface) interface [11, 

12], which is an automatic performance optimization 

package to optimize SpMV. Both SPARSITY and 

OSKI adopt a heuristic algorithm to determine the 

optimal block size of sparse matrix, in order to 

improve the performance of SpMV. 

Yuan [13] shows that, using BCSR format can 

indeed improve the SpMV performance, and the 

heuristic algorithm can also choose a high performance 

block size for matrices with regular non-zero items. 

However, OSKI is a sequential software package and 

the performance doesn’t satisfy the large scale 

application demand. Therefore, how to parallelize and 

optimize the SpMV to get a better performance on 

GPGPU becomes a very important problem need to be 

further studied. 

 

2.3. Basic Linear Algebra Kernels on GPU 
 

In 2001, Larsen [14] used multi-texture technology 

to process matrix operation. With the emergence of 

programmable vertex, Thompson and others [1] 

implemented an algebra framework by vertex 

programming, including vector operations and matrix 

multiplications. The emergence of programmable pixel 

accelerated the research in this area. Krieger [15] used 

pixels to do basic algebra. Hall [16] has made a lot of 

optimizations for matrix multiplication using pixels, in 

order to take full advantage of the GPU cache. 

In recent years, there are more and more researches 

in this area. Informed readers can refer to [17] and [18] 

for more details. Ding and Kennedy introduced some 

GPGPU-related technology optimizations in [19] and 

[20]. Several GPU-based algorithms for sparse matrix 

multiplication on emerging architectures have been 

proposed e.g. in [21], [22] and [23]. Especially, 

Buatois [23] implemented SpMV in BCSR 2×2 and 

BCSR 4×4 formats on GPGPU. Based on these 

researches, we designed and implemented an automatic 

performance tuning SpMV software package 

GOSpMV on GPGPU platform. 

 

3. GOSpMV Overview 
 

GOSpMV takes advantage of AMD Stream 

Computing (GPGPU) computation power to accelerate 

SPMV calculation. For the achievement of SpMV 

speedup on GPGPU, we implemented SpMV based on 

BCSR format with automatic tuning technology. 

In Figure 2, it depicts the architecture of GOSpMV 

software package which is composed of four 

components. They are listed as follows.  

(1) Block Based SpMV Implementation on GPGPU. 

In this component, it includes many different SpMV 

implementations with different block sizes. The details 

are shown in Section 3.1. 



(2) Automatic Performance Tuning component. It 

automatically selects the suitable block size to get the 

best performance. Section 3.2 describes the detail of 

this technology. 
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Figure 2. GOSpMV system architecture 

 

(3) Matrix Storage Format Transformation. It 

supports the feature of transforming sparse matrix from 

CSR into BCSR storage. 

(4) GOSpMV API. It exposes some APIs for user 

calling. 

 

3.1. Block Based SpMV Implementation on 

GPGPU 
 

On AMD Stream Computing, GOSpMV can 

support 4 block sizes which are 1×1, 2×2, 3×3 and 4×4. 

The sparse matrix A is transformed from CSR into 

corresponding BCSR format on CPU before 

calculation on GPGPU. 
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Figure 3. Block based SpMV on GPGPU.  

(A) Multiplication kernel. (B) Sum kernel. 

 

To use processing units on GPGPU more efficiently, 

we applied fine-grained parallelism on SpMV. The 

method is calculating SpMV in 2 kernels. As shown in 

Figure 3A, the first kernel runs multiplications of each 

matrix block and vector x in every thread. The vector x 

is read by gather access, and the sparse matrix nonzero 

values & column index are direct mapping method.  

Figure 3B depicting the second kernel, according to 

the index pointers of sparse matrix, it sums the first 

kernel multiplication result and the vector y values. 

The thread is created by each row of vector y on 

GPGPU. Finally, we get the SpMV result. 

 

3.2. Automatic Performance Tuning  
 

To choose the best block size for a given sparse 

matrix to get the best performance on a special GPGPU, 

this package refers to the OSKI’s solution and applies 

off-line/run-time heuristic search to GPGPU. The 

workflow is shown in Figure 4: 1) Benchmark on 

GPGPU is running the testing function at the install-

time (Section 3.2.1); 2) Evaluation the spare matrix 

and choose the best block size from the collected 

information on run-time (Section 3.2.2). 
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Figure 4. The workflow of GOSpMV automatic 

performance tuning 

 

3.2.1. Benchmark on GPGPU. Similar to OSKI, 

we transform the dense matrix into sparse matrix CSR 

format and run SpMV with different BCSR block sizes 

on GPGPU. Differently, we find that the performance 

has relationship with the matrix size (the count of non-

zero elements) nz. This relationship on the 

experimental platform described in section 4.1 is 

shown in Figure 5. 

SpMV performance information on GPGPU is not 

only determined by the block size, we should also take 

the size of sparse matrix into account. The 

implementation of this software package is that: getting 

the performance (in MFLOPS) by using different sizes 

of dense matrix under different block sizes and store 

the GPGPU benchmark data for the future evaluation 

and selection of the best block size for a given sparse 

matrix.  

Assume the block size is block-format(r×c), where 

r presents row counts in block and c presents column 

counts in block. The dense matrix size is nzd, then 

Pdense(block-format, nzd) presents the benchmark data on 

GPGPU.  
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Figure 5. The performance with different block size 

and non-zero count 

3.2.2. Run-Time Evaluation. It searches the optimal 

BCSR block size and implementation on GPGPU. As 

shown in Figure 6, for the given sparse matrix A the 

run-time evaluation calculates performance estimate P 

(A, block-format, σ) for each block size, then chooses 

the BCSR r × c that makes it maximum.  

Firstly, it calculates the estimated matrix fill ratio 

fErc(A, σ) with sample rate σ by the method in reference 

[6], and nzEBCSR represents the non-zeros number of 

sparse matrix A in this BCSR block size. 

Secondly, it reads GPGPU benchmark data 

Pdense(block-format, nzd), and sets its value to block 

based SpMV performance estimate Psp(block-format, 

nzEBCSR) where nzd is the nearest to nzEBCSR. 

Thirdly, P (A, block-format, σ) equals Psp(block-

format, nzEBCSR) divided by fErc(A, σ). 

Input: Sparse Matrix A, GPGPU Benchmark data 

Pdense(block-format, nzd)  

Output: the maximum P (A, block-format, σ), BCSR 

block size 

For each BCSR r × c  

do 

     calculate estimated fill ratio fErc(A, σ) with sample 

rate σ 

      Psp(block-format, nzEBCSR)= Pdense(block-format, nzd), 

where nzd is the nearest to nzEBCSR  

      P (A, block-format, σ) = 
),(

),(

Af

nzformatblockP

Erc

EBCSR


 

done 

Figure 6. The GOSpMV run-time evaluation 

 

4. Experiment and Analysis 
 

4.1. Experimental Platform and Data Sets 
 

Our Experimental platform equips Intel Pentium 

Dual Core E2160/1.8GHz, 2.0GB memory and AMD 

Radeon HD 3690 graphic card which peak 

performance is 428.8 GigaFLOPS (single precision). 

The software environment is Linux 2.6.24, AMD 

Stream SDK v1.1-beta and compiler GCC 4.2.3.  

 

Table 1. Experimental matrices 

BCSSTK17 

 

row 10974 

column 10974 

nonzeros 219812 

type real symmetric 

BCSSTK28 

 

row: 4410 

column: 4410 

nonzeros 111717 

type real symmetric 

epb1 

 

row 14734 

column 14734 

nonzeros 95053 

type real unsymmetric 

FIDAP037 

 

row  3565 

column 3565 

nonzeros 67591 

type real unsymmetric 

raefsky2 

 

row 3242 

column 3242 

nonzeros 294276 

type real unsymmetric 

raefsky3 

 

row  21200 

column 21200 

nonzeros 1488768 

type real unsymmetric 

twotone 

 

row 120750 

column 120750 

nonzeros 1224224 

type real unsymmetric 

venkat01 

 

row 62424 

column 62424 

nonzeros 1717792 

type real unsymmetric 

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk17.html


According to the different sparse matrix size (small, 

medium and large), we collected 8 sparse matrices. 

They are all from popular sparse matrix collections. 

The matrix BCSSTK17, BCSSTK28 and FIDAP037 are 

from Matrix Market [24], and others are from UF 

Sparse Matrix Collection [25]. The details of 

Experimental matrices are shown in Table 1. The small 

matrices (nonzero<100,000) are epb1 and FIDAP037. 

The medium matrices (100,000<nonzero<1,000,000) 

are BCSSTK17, BCSSTK28 and raefsky2, others are 

large matrices (nonzero > 1,000,000). 

4.2. Experimental Results and Analysis 
 

GOSpMV has tested SpMV performance with 4 

different block sizes (1×1, 2×2, 3×3, and 4×4) and only 

supports single precision, so the tested matrices should 

be transformed into single precision. For comparison, 

we also test the SpMV performance of single precision 

on CPU with CSR format as shown in Code 1. 

 

 
Figure 7. Performance for 8 test matrices with 1500 

iterations 

Figure 7 shows the SpMV performance when the 

iteration number reaches 1500. In most situations, the 

performance with block size 1×1 is the worst on GPU. 

The main reason is that there is no x reused and x is 

accessed irregularly for block size 1×1. In contrast, the 

performance can be improved by better locality and 

reuse x for block size 2×2, 3×3 and 4×4. 

With different matrix sizes and structures, we can 

get different speedups on GPGPU. As shown in Figure 

7, the matrix epb1 and FIDAP037 with small size have 

no obvious speedup, especially for the FIDAP037 

matrix, the performance on GPGPU of which is lower 

than that on CPU. The sparse matrix with small size 

and less non-zero elements cannot make use of 

GPGPU very well. The sparse matrix BCSSTK17，
BCSSTK28, and raefsky2 with medium size can get 

speedup about 3 and the sparse matrix raefsky3 and 

venkat01 with large size can get speedup nearly 6. The 

reason why sparse matrix twotone with large size 

cannot get good speedup is that the block size 2×2，
3×3 and 4×4 are not suitable for its non-zero structure 

and its filling ratio is 3.190, 5.621 and 7.787 

respectively. In BCSR format the performance is 

affected by too many filled zero. 

We also tested the performance of different block 

sizes with the iteration number 100, 300, 500, 1000, 

and 1500. The result is given in Figure 8. Apparently, 

the performance can be improved by increasing 

iteration number, until they reach the stable 

performance. The reason is the cost used in kernel 

initialization and schedule on GPGPU can be 

amortized by more iteration number. 

 

 

 
   

    
Figure 8. Performance with different testing sparse matrices and iteration number 
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The effect of GOSpMV automatic performance 

tuning is examined which result is described at Table 2. 

Except the matrix raefsky2, the rest all choose the 

optimal block size and get the max speedup with 5.95 

in matrix venkat01. In matrix raefsky2 test case, it 

chooses the suboptimal block size 4×4, but as Figure 7 

shows, the performance is very close to that optimal 

block size 2×2. The average speedup can reach 3.11 for 

the 8 testing sparse matrices and the tuning cost is very 

small compared to the computing time. 

 
Table 2. The final performance result of automatic 

tuning (Iteration number: 1500) 

 

5. Conclusion and Future work 
 

When the iteration number reaches 1500, SpMV 

performance used GOSpMV on 8 testing sparse 

matrices can get average speedup with 3.11 and the 

max speedup is 5.95. From the experimental results we 

can find that if the iteration number is large enough and 

the sparse matrix is larger and regular, GOSpMV can 

get higher performance. Basically, GOSpMV is 

suitable for more than 300 iterations, medium and large 

sparse matrices and low fill ratio. 

GOSpMV can always get the best block size in most 

situations and in rare time gets the suboptimal block 

size. The SpMV performance under the suboptimal 

block size is close to that under the best block size. As 

the GOSpMV uses the automatic performance tuning 

technique, it can be easily transformed to other new 

GPGPU platform and has better portability with high 

SpMV performance.  

Now the block sizes supported by GOSpMV are 

limited. The relationship between performance and 

matrix size is not clear enough, and our GOSpMV 

doesn’t support double precision float data because of 

time limit. In the future we will continue our work on 

above issues to get higher performance for SpMV 

computation on GPGPU. 
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