
Automatic Performance Tuning of SpMV on GPGPU

Xianyi Zhang
1
, Yunquan Zhang

1,2
, Xiangzheng Sun

1,2,3
, Fangfang Liu

1
, Shengfei Liu

1,2,3
 ,

 Yuxin Tang
1,2,3

 and Yucheng Li
1

1
Laboratory of Parallel Computing, Institute of Software, Chinese Academy of Sciences

2
State Key Laboratory of Computer Science, Chinese Academy of Sciences

3
Graduate University of Chinese Academy of Sciences

{zxy, zyq, sxz, liuff, lsf, tangyx, lyc}@mail.rdcps.ac.cn

Abstract

Sparse Matrix-Vector Multiplication (SpMV) is an

important computational kernel in scientific

applications that tends to perform poorly on modern

processors because of irregular memory accesses.

GPU have evolved into a very attractive hardware

platform for general purpose computations due to their

high floating-point computation performance, which

results in that GPGPU becomes the hot and popular

topic in HPC. Therefore, we need to parallelize and

optimize SpMV on GPGPU to get a better performance.

In this paper, we studied the register-level blocking

algorithm and the heuristic algorithm to optimize

SpMV performance on GPGPU. Based on AMD

Stream Computing, We propose an automatic

performance tuning SpMV software package on

GPGPU, with its name GOSpMV. Experimental results

on AMD Radeon HD 3690 shows that, compared with

the CSR format SpMV implementation on CPU, our

GOSpMV can achieve an average speedup with 3.11

and the max speedup is 5.95.

Keywords: SpMV, self adapting algorithm,

heuristic-register blocking algorithm, GPGPU,

AMD Stream Computing

1. Introduction

Sparse Matrix-Vector Multiplication (SpMV) is one

of the most important kernels that are widely used in a

lot of scientific applications, such as PDE solver,

image processing and the simulation of a large variety

of physical, financial, social etc. SpMV performs

poorly on modern processors because of its low

computation-to-memory-access ratio and irregular

memory access patterns, and the deeper memory

hierarchy makes optimization even more difficult to

perform.

The rapid evolution of GPUs in performance,

architecture and programmability can provide

application potential beyond their primary purpose of

graphics processing. GPU-based general-purpose

computing (GPGPU, General-Purpose Computation on

GPU) refers to the use of the graphics card to achieve

general computing, rather than simply drawing [1].

Graphic processing units (GPU) have evolved into a

very attractive hardware platform for general purpose

computations due to their extremely high floating-point

processing performance, huge memory bandwidth and

their comparatively energy low cost.

AMD Stream Computing [2] is the GPGPU solution

on AMD hardware. It could be applied for financial

analysis, seismic migration analysis, and life sciences

applications. GPUs such as AMD RV770 can achieve

single-precision 1Tera Flops, which is much faster than

the traditional CPU computing platform. GPGPU has

the natural advantage of multithreading in parallel

computing. Therefore, how to parallelize and optimize

SpMV on GPGPUs has become very important issue.

The rest of this paper is organized as follows: In

section 2 we present a brief overview of related work

about SpMV and GPGPU; In section 3 we propose the

architecture and module details of GOSpMV; In

section 4 we perform experiments with 8 sparse

matrices selected from different application area, and

analyze their performance; Section 5 is our conclusions

and the future work.

2. Related Work

2.1. Introduction to SpMV Algorithms

We consider the SpMV operation y=y+Ax, if y is

initialized with 0, the SpMV becomes y=Ax. Here A is

an m×n sparse matrix with nz non-zero elements. The x

and y are dense vectors.

mailto:liuff@mail.rdcps.ac.cn

The most frequently applied storage format for

sparse matrices is the Compressed Sparse Row (CSR)

format. The nz non-zero elements are stored in row-

major order contiguously in memory. It needs three

arrays as follows:

A_val[nz]: stores the value of each non-zero element

in the sparse matrix;

A_col[nz]: contains all column indices of non-zero

element in the sparse matrix;

A_ptr[m+1]: stores indices indicating the location in

A_val[nz] and A_col[nz] of the first element of each

row, and A_ptr[m]=nz (the index values of A_ptr start

at 0).

The SpMV in CSR format is shown in Figure 1.

for(i=0;i<m;i++)

{

value = y[i];

for (j = A_ptr[i];j<A_ptr[i+1];j++)

value = value + A_val[j]*x[A_col[j]];

y[i] = value;

}

Figure 1：SpMV in CSR format

In our paper, we use Blocked Compressed Sparse

Row (BCSR) format, which is blocked variant of CSR.

It divides the matrix A into some r c blocks and

stores every block sequentially. If a block has only a

part of non-zeros element, we should fill the other

location with 0. Therefore, the 0 values should be

stored explicitly. It also needs three arrays as follows:

A_val: stores the value of every block sequentially;

A_col: records the column index of the first non-

zeros element of every block, every block only needs

one column index;

A_ptr: stores indices indicating the location of the

first block of each block row.

2.2. Performance Optimization of SpMV on

CPU

There are many existing SpMV optimization

techniques, including Register Blocking [3-7], Cache

Blocking [3,4,8,9], Multi-vector Technology [4],

Symmetric Structure [6], Diagonal Technology [6],

Re-arrangement [6], and so on. SPARSITY package [4]

optimized the SpMV core and solved the SpMV and

SpMM with automatic optimization technology. Based

on SPARSITY, the BeBOP (Berkeley Benchmarking

and OPtimization Group) Group [10] developed OSKI

(The Optimized Sparse Kernel Interface) interface [11,

12], which is an automatic performance optimization

package to optimize SpMV. Both SPARSITY and

OSKI adopt a heuristic algorithm to determine the

optimal block size of sparse matrix, in order to

improve the performance of SpMV.

Yuan [13] shows that, using BCSR format can

indeed improve the SpMV performance, and the

heuristic algorithm can also choose a high performance

block size for matrices with regular non-zero items.

However, OSKI is a sequential software package and

the performance doesn’t satisfy the large scale

application demand. Therefore, how to parallelize and

optimize the SpMV to get a better performance on

GPGPU becomes a very important problem need to be

further studied.

2.3. Basic Linear Algebra Kernels on GPU

In 2001, Larsen [14] used multi-texture technology

to process matrix operation. With the emergence of

programmable vertex, Thompson and others [1]

implemented an algebra framework by vertex

programming, including vector operations and matrix

multiplications. The emergence of programmable pixel

accelerated the research in this area. Krieger [15] used

pixels to do basic algebra. Hall [16] has made a lot of

optimizations for matrix multiplication using pixels, in

order to take full advantage of the GPU cache.

In recent years, there are more and more researches

in this area. Informed readers can refer to [17] and [18]

for more details. Ding and Kennedy introduced some

GPGPU-related technology optimizations in [19] and

[20]. Several GPU-based algorithms for sparse matrix

multiplication on emerging architectures have been

proposed e.g. in [21], [22] and [23]. Especially,

Buatois [23] implemented SpMV in BCSR 2×2 and

BCSR 4×4 formats on GPGPU. Based on these

researches, we designed and implemented an automatic

performance tuning SpMV software package

GOSpMV on GPGPU platform.

3. GOSpMV Overview

GOSpMV takes advantage of AMD Stream

Computing (GPGPU) computation power to accelerate

SPMV calculation. For the achievement of SpMV

speedup on GPGPU, we implemented SpMV based on

BCSR format with automatic tuning technology.

In Figure 2, it depicts the architecture of GOSpMV

software package which is composed of four

components. They are listed as follows.

(1) Block Based SpMV Implementation on GPGPU.

In this component, it includes many different SpMV

implementations with different block sizes. The details

are shown in Section 3.1.

(2) Automatic Performance Tuning component. It

automatically selects the suitable block size to get the

best performance. Section 3.2 describes the detail of

this technology.

G

P

G

P

U

Block Based SpMV Implementation

(BCSR 1x1, 2x2, 3x3, 4x4)

C

P

U

GOSpMV API

Automatic

Performance

Tuning

Matrix Storage

Format

Transformation

Figure 2. GOSpMV system architecture

(3) Matrix Storage Format Transformation. It

supports the feature of transforming sparse matrix from

CSR into BCSR storage.

(4) GOSpMV API. It exposes some APIs for user

calling.

3.1. Block Based SpMV Implementation on

GPGPU

On AMD Stream Computing, GOSpMV can

support 4 block sizes which are 1×1, 2×2, 3×3 and 4×4.

The sparse matrix A is transformed from CSR into

corresponding BCSR format on CPU before

calculation on GPGPU.

A.

Thread 0

Thread 1 Thread 2

Thread 3

xSparse Matrix A

×

B.

+

yTemp multiplication result

Thread

0

Thread

1

Thread

2

Figure 3. Block based SpMV on GPGPU.

(A) Multiplication kernel. (B) Sum kernel.

To use processing units on GPGPU more efficiently,

we applied fine-grained parallelism on SpMV. The

method is calculating SpMV in 2 kernels. As shown in

Figure 3A, the first kernel runs multiplications of each

matrix block and vector x in every thread. The vector x

is read by gather access, and the sparse matrix nonzero

values & column index are direct mapping method.

Figure 3B depicting the second kernel, according to

the index pointers of sparse matrix, it sums the first

kernel multiplication result and the vector y values.

The thread is created by each row of vector y on

GPGPU. Finally, we get the SpMV result.

3.2. Automatic Performance Tuning

To choose the best block size for a given sparse

matrix to get the best performance on a special GPGPU,

this package refers to the OSKI’s solution and applies

off-line/run-time heuristic search to GPGPU. The

workflow is shown in Figure 4: 1) Benchmark on

GPGPU is running the testing function at the install-

time (Section 3.2.1); 2) Evaluation the spare matrix

and choose the best block size from the collected

information on run-time (Section 3.2.2).

Benchmark on

GPGPU

GPGPU

Benchmark

Data

Sparse Matrix

Evaluation

Return the optimal BCSR

block size and SpMV

implementation on

GPGPU

GOSpMV Install-Time (off-

line)
Application Run-Time

Figure 4. The workflow of GOSpMV automatic

performance tuning

3.2.1. Benchmark on GPGPU. Similar to OSKI,

we transform the dense matrix into sparse matrix CSR

format and run SpMV with different BCSR block sizes

on GPGPU. Differently, we find that the performance

has relationship with the matrix size (the count of non-

zero elements) nz. This relationship on the

experimental platform described in section 4.1 is

shown in Figure 5.

SpMV performance information on GPGPU is not

only determined by the block size, we should also take

the size of sparse matrix into account. The

implementation of this software package is that: getting

the performance (in MFLOPS) by using different sizes

of dense matrix under different block sizes and store

the GPGPU benchmark data for the future evaluation

and selection of the best block size for a given sparse

matrix.

Assume the block size is block-format(r×c), where

r presents row counts in block and c presents column

counts in block. The dense matrix size is nzd, then

Pdense(block-format, nzd) presents the benchmark data on

GPGPU.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

25
00

40
00
0

12
25
00

25
00
00

42
25
00

64
00
00

90
25
00

12
10
00
0

15
62
50
0

19
60
00
0

24
02
50
0

28
90
00
0

34
22
50
0

40
00
00
0

nzCount

M
F
L
O
P
S

1x1

2x2

3x3

4x4

Figure 5. The performance with different block size

and non-zero count

3.2.2. Run-Time Evaluation. It searches the optimal

BCSR block size and implementation on GPGPU. As

shown in Figure 6, for the given sparse matrix A the

run-time evaluation calculates performance estimate P

(A, block-format, σ) for each block size, then chooses

the BCSR r × c that makes it maximum.

Firstly, it calculates the estimated matrix fill ratio

fErc(A, σ) with sample rate σ by the method in reference

[6], and nzEBCSR represents the non-zeros number of

sparse matrix A in this BCSR block size.

Secondly, it reads GPGPU benchmark data

Pdense(block-format, nzd), and sets its value to block

based SpMV performance estimate Psp(block-format,

nzEBCSR) where nzd is the nearest to nzEBCSR.

Thirdly, P (A, block-format, σ) equals Psp(block-

format, nzEBCSR) divided by fErc(A, σ).

Input: Sparse Matrix A, GPGPU Benchmark data

Pdense(block-format, nzd)

Output: the maximum P (A, block-format, σ), BCSR

block size

For each BCSR r × c

do

 calculate estimated fill ratio fErc(A, σ) with sample

rate σ

 Psp(block-format, nzEBCSR)= Pdense(block-format, nzd),

where nzd is the nearest to nzEBCSR

 P (A, block-format, σ) =
),(

),(

Af

nzformatblockP

Erc

EBCSR

done

Figure 6. The GOSpMV run-time evaluation

4. Experiment and Analysis

4.1. Experimental Platform and Data Sets

Our Experimental platform equips Intel Pentium

Dual Core E2160/1.8GHz, 2.0GB memory and AMD

Radeon HD 3690 graphic card which peak

performance is 428.8 GigaFLOPS (single precision).

The software environment is Linux 2.6.24, AMD

Stream SDK v1.1-beta and compiler GCC 4.2.3.

Table 1. Experimental matrices

BCSSTK17

row 10974

column 10974

nonzeros 219812

type real symmetric

BCSSTK28

row: 4410

column: 4410

nonzeros 111717

type real symmetric

epb1

row 14734

column 14734

nonzeros 95053

type real unsymmetric

FIDAP037

row 3565

column 3565

nonzeros 67591

type real unsymmetric

raefsky2

row 3242

column 3242

nonzeros 294276

type real unsymmetric

raefsky3

row 21200

column 21200

nonzeros 1488768

type real unsymmetric

twotone

row 120750

column 120750

nonzeros 1224224

type real unsymmetric

venkat01

row 62424

column 62424

nonzeros 1717792

type real unsymmetric

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk17.html

According to the different sparse matrix size (small,

medium and large), we collected 8 sparse matrices.

They are all from popular sparse matrix collections.

The matrix BCSSTK17, BCSSTK28 and FIDAP037 are

from Matrix Market [24], and others are from UF

Sparse Matrix Collection [25]. The details of

Experimental matrices are shown in Table 1. The small

matrices (nonzero<100,000) are epb1 and FIDAP037.

The medium matrices (100,000<nonzero<1,000,000)

are BCSSTK17, BCSSTK28 and raefsky2, others are

large matrices (nonzero > 1,000,000).

4.2. Experimental Results and Analysis

GOSpMV has tested SpMV performance with 4

different block sizes (1×1, 2×2, 3×3, and 4×4) and only

supports single precision, so the tested matrices should

be transformed into single precision. For comparison,

we also test the SpMV performance of single precision

on CPU with CSR format as shown in Code 1.

Figure 7. Performance for 8 test matrices with 1500

iterations

Figure 7 shows the SpMV performance when the

iteration number reaches 1500. In most situations, the

performance with block size 1×1 is the worst on GPU.

The main reason is that there is no x reused and x is

accessed irregularly for block size 1×1. In contrast, the

performance can be improved by better locality and

reuse x for block size 2×2, 3×3 and 4×4.

With different matrix sizes and structures, we can

get different speedups on GPGPU. As shown in Figure

7, the matrix epb1 and FIDAP037 with small size have

no obvious speedup, especially for the FIDAP037

matrix, the performance on GPGPU of which is lower

than that on CPU. The sparse matrix with small size

and less non-zero elements cannot make use of

GPGPU very well. The sparse matrix BCSSTK17，
BCSSTK28, and raefsky2 with medium size can get

speedup about 3 and the sparse matrix raefsky3 and

venkat01 with large size can get speedup nearly 6. The

reason why sparse matrix twotone with large size

cannot get good speedup is that the block size 2×2，
3×3 and 4×4 are not suitable for its non-zero structure

and its filling ratio is 3.190, 5.621 and 7.787

respectively. In BCSR format the performance is

affected by too many filled zero.

We also tested the performance of different block

sizes with the iteration number 100, 300, 500, 1000,

and 1500. The result is given in Figure 8. Apparently,

the performance can be improved by increasing

iteration number, until they reach the stable

performance. The reason is the cost used in kernel

initialization and schedule on GPGPU can be

amortized by more iteration number.

Figure 8. Performance with different testing sparse matrices and iteration number

venkat01

0
500

1000
1500

2000

2500

3000

100 300 500 1000 1500
Iterations

M
F
L
OP
S

1x1
2x2
3x3
4x4

twotone

0
100
200
300
400
500
600

100 300 500 1000 1500
Iterations

M
F
L
OP
S

1x1
2x2
3x3
4x4

raefsky3

0
500

1000
1500
2000

2500
3000

100 300 500 1000 1500
Iterations

M
F
L
OP
S

1x1
2x2
3x3
4x4

raefsky2

0
200
400

600

800

1000

1200

1400

1600

100 300 500 1000 1500
Iterations

M
F
L
OP
S

1x1

2x2

3x3

4x4

FIDAP037

0
50

100
150
200
250
300
350
400

100 300 500 1000 1500
Iterations

M
F
LO
PS

1x1
2x2
3x3
4x4

epb1

0
100
200
300
400
500
600

100 300 500 1000 1500
Iterations

M
F
L
OP
S

1x1
2x2
3x3
4x4

BCSSTK28

0
200
400
600
800

1000
1200
1400

100 300 500 1000 1500
Iterations

M
F
L
OP
S 1x1

2x2
3x3
4x4

BCSSTK17

0
200
400
600
800

1000
1200
1400

100 300 500 1000 1500
Iterations

M
F
L
OP
S

1x1
2x2
3x3
4x4

The effect of GOSpMV automatic performance

tuning is examined which result is described at Table 2.

Except the matrix raefsky2, the rest all choose the

optimal block size and get the max speedup with 5.95

in matrix venkat01. In matrix raefsky2 test case, it

chooses the suboptimal block size 4×4, but as Figure 7

shows, the performance is very close to that optimal

block size 2×2. The average speedup can reach 3.11 for

the 8 testing sparse matrices and the tuning cost is very

small compared to the computing time.

Table 2. The final performance result of automatic

tuning (Iteration number: 1500)

5. Conclusion and Future work

When the iteration number reaches 1500, SpMV

performance used GOSpMV on 8 testing sparse

matrices can get average speedup with 3.11 and the

max speedup is 5.95. From the experimental results we

can find that if the iteration number is large enough and

the sparse matrix is larger and regular, GOSpMV can

get higher performance. Basically, GOSpMV is

suitable for more than 300 iterations, medium and large

sparse matrices and low fill ratio.

GOSpMV can always get the best block size in most

situations and in rare time gets the suboptimal block

size. The SpMV performance under the suboptimal

block size is close to that under the best block size. As

the GOSpMV uses the automatic performance tuning

technique, it can be easily transformed to other new

GPGPU platform and has better portability with high

SpMV performance.

Now the block sizes supported by GOSpMV are

limited. The relationship between performance and

matrix size is not clear enough, and our GOSpMV

doesn’t support double precision float data because of

time limit. In the future we will continue our work on

above issues to get higher performance for SpMV

computation on GPGPU.

Acknowledgements

We thank the anonymous reviewers for their very

invaluable feedback. We want to thank AMD for the

donated hardware and technical support about AMD

Stream Computing, especially John Li, Gloria Le,

Di-Yong Fu and Michael Houston.

This work was partially supported by the National

Nature Science Foundation of China (No.60303032),

Key Program of National Nature Foundation of

China (No. 60533020), the National 863 Plan of

China (No. 2006AA01A102 and No.

2006AA01A125), and Opening Foundation (2005-

05) of State Key Lab of Networking and Switching

Technology in Beijing University of Posts and

Telecommunications.

References

[1] Thompson CJ, Hahn S, Oskin M. “Using modern graphics

architectures for general-purpose computing：A framework

and analysis”. MICRO 35: Proceedings of the 35th annual

ACM/IEEE international symposium on Microarchitecture,

IEEE Computer Society Press, 2002, 306-317

[2] AMD Stream Computing.

http://ati.amd.com/technology/streamcomputing/

[3] Eun-Jin Im, Katherine Yelick, Richard Vuduc, “Sparsity:

Optimization Framework for Sparse Matrix Kernels”,

International Journal of High Performance Computing

Applications, Vol. 18, No. 1, 135-158 (2004)

[4] E.-J. Im and K.A.Yelick, “Optimizing Sparse Matrix

Computations for Register Reuse in SPARSITY”, In

proceedings of the International Conference on

Computational Science, volume 2073 of LNCS, pages 127-

136, San Francisco, CA, May 2001.Springer.

[5] R.Vuduc, J.W.Demmel, K.A.Yelick, S.Kamil, R.Nishtala,

and B.Lee, “Performance optimizations and bounds for

sparse matrix-vector multiply”, In proceedings of

Supercomputing, Baltimore, MD, USA, November 2002.

[6] Richard Wilson Vuduc. “Automatic Performance Tuning

of Sparse Matrix Kernels.” Ph.D. diss., Computer Science

Division, U.C. Berkeley, December 2003.

[7] Richard Vuduc, James W. Demmel,Jeff Bilmes,

“Statistical Models for Empirical Search-Based Performance

Tuning”, International Journal of High Performance

Computing Applications, Vol. 18, No. 1, 65-94 (2004).

[8] Rajesh Nishtala, Richard W. Vuduc, James W. Demmel,

Katherine A. Yelick. “Performance Modeling and Analysis of

Cache Blocking in Sparse Matrix Vector Multiply”. Report

No.UCB/CSD-04-1335.

[9] Rajesh Nishtala, Richard Vuduc, James W. Demmel, and

Katherine A. Yelick. “When Cache Blocking of Sparse

Matrix Vector Multiply Works and Why”. In Proceedings of

the PARA’04 Workshop on the State-of-the-art in Scientific

Computing, 2004.

[10] Berkeley Benchmarking and OPtimization (BeBOP)

Project. http://Bebop.cs.berkeley.edu.

Datasets
BCSR
Block

size

GOSpMV

Speedup

Computing
time on

GPGPU (s)

Tuning
Time

Cost (s)

BCSSTK17 4×4 2.9851 1.006 0.023

BCSSTK28 4×4 2.5957 0.564 0.01

epb1 2×2 1.6275 0.488 0.008

FIDAP037 2×2 0.9378 0.559 0.007

raefsky2 4×4 3.2471 0.602 0.015

raefsky3 4×4 5.9195 1.699 0.064

twotone 2×2 1.6193 6.75 0.118

venkat01 4×4 5.9456 2.02 0.112

http://bebop.cs.berkeley.edu/

[11] Richard Vuduc, James Demmel, Katherine Yelick,

“OSKI: A library of automatically tuned sparse matrix

kernels”, Proceedings of SciDAC 2005, Journal of Physics:

Conference Series, June 2005.

[12] Optimized Sparse Kernel Interface.

http://bebop.cs.berkeley.edu/oski/.

[13] E Yuan, Yun-quan Zhang and Xiangzheng Sun,

“Memory Access Complexity Analysis of SpMV in RAM (h)

Model”, in proceedings of 10th IEEE International

Conference on High Performance Computing and

Communications, 2008, 913-920

[14] Larsen E.S, McAllister D, “Fast matrix multiplies using

graphics hardware,” Supercomputing '01: Proceedings of the

2001 ACM/IEEE conference on Supercomputing (CDROM),

ACM, 2001, 55-55

[15] Krüger, J. & Westermann, R. “Linear algebra operators

for GPU implementation of numerical algorithms”, ACM

Trans. Graph., ACM, 2003, 22, 908-916

[16] Jesse D. Hall, Nathan A. Carr, J. C. H. “Cache and

Bandwidth Aware Matrix Multiplication on the GPU”,

University of Illinois Dept. of Computer Science, 2003
[17] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris. “A

survey of general-purpose computation on graphics

hardware”. Computer Graphics Forum, 26(1):80–113, 2007.

[18] Wu EH, Liu YQ. “General purpose computation on

GPU”. Chinese Journal of Computer Aided Design &

Computer Graphics, 2004, 16(5): 601~612．

[19] C. Ding and K. Kennedy, “The memory bandwidth

amelioration by a compiler”, in Proceedings of the 14th

International Symposium on Parallel and Distributed

Processing, May 2000, pp:181-190.

[20] C. Ding and K. Kennedy, “Improving effective

bandwidth through compiler enhancement of global cache

reuse”, Journal of Parallel and Distributed Computing,

January, 2004, vol. 64, no.1, pp: 108-134.

[21] Göddeke, D.; Strzodka, R. & Turek, S. “Performance

and accuracy of hardware-oriented native-, emulated-and

mixed-precision solvers in FEM simulations”, Int. J. Parallel

Emerg. Distrib. Syst., Taylor & Francis, Inc., 2007, 22, 221-

256

[22] J. Bolz, I. Farmer, E. Grinspun, and P. Schr öder,

“Sparse matrix solvers on the GPU: conjugate gradients and

multigrid,” in SIGGRAPH ’05: ACM SIGGRAPH 2005

Courses. New York, NY, USA: ACM Press, 2005, p. 171.

[23] Buatois, L., C. G. L. B. “Concurrent number cruncher:

An efficient sparse linear solver on the GPU”, in Proceedings

of the High-Performance Computation Conference (HPCC),

2007.

[24] Matrix Market http://math.nist.gov/MatrixMarket/

[25] UF Sparse Matrix Collection

http://www.cise.ufl.edu/research/sparse/matrices/

http://bebop.cs.berkeley.edu/oski/
http://math.nist.gov/MatrixMarket/
http://www.cise.ufl.edu/research/sparse/matrices/

