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Abstract 
 

In this paper, the mixed precision algorithm to solve 
the linear system of equations and the implementation 
of HPL package are introduced. We use this mixed 
precision algorithm to improve HPL package on 
CPU+GPGPU heterogeneous clusters, which is named 
for GHPL, and give the implementation mechanisms in 
detail. The experimental results are measured on the 
platforms of multi-core CPUs and CPU+GPGPU 
heterogeneous clusters. From the experimental results, 
we can find out that our GHPL program has good 
scalability on all the experimental environments and 
can sustain more than 1.7Teraflops both on the cluster 
with 16 nodes containing 32 NVIDIA Tesla C1060 
GPUs and on the cluster with 8 nodes containing 32 
NVIDIA GeForce GTX 295 GPUs, while the average 
speedup of it with respect to HPL is 3.06  and 2.40 
respectively. 
 
1. Introduction 
 

The Linpack benchmark is very famous in the HPC 
society, since it is adopted as a performance metric for 
ranking supercomputers both in the TOP500[1] list of 
the world’s fastest computers and in the HPC 
TOP100[2] list of the Chinese mainland fastest 
computers. In this paper we study and improve the 
HPL[3] package, High Performance Linpack, which is 
a reference implementation of the Linpack benchmark 
written by the researchers of the Innovative Computing 
Laboratory at the University of Tennessee. HPL is a 
software package that solves dense linear system of 
equations using direct LU method in double precision 
arithmetic on distributed-memory computers. It’s the 
most widely used implementation of the Linpack 
benchmark. A testing and timing program is provided 
by HPL to quantify the accuracy of the obtained 
solution as well as the time it took to finish it. Details 
of the HPL implementation are available in [4]. 

Nowadays, the performance of 32-bit operations is 
usually much higher than the performance of 64-bit 

operations on General Purpose Graphics Processing 
Units (GPGPU). The Mixed precision algorithm uses a 
combination of 32-bit and 64-bit floating point 
arithmetic to enhance the performance of many dense 
and sparse linear algebra algorithms significantly while 
still delivering the 64-bit accuracy of the resulting 
solution. Thus, in this paper, we try to use the mixed 
precision algorithm to improve the HPL package on 
CPU+GPGPU heterogeneous clusters, where both 
CPUs and GPGPUs are used in synergy. 
2. Related work  
 

Mixed precision algorithms stem from the 
observation that, in many cases, a single precision 
solution of a problem can be refined to the point where 
double precision accuracy is achieved. The mixed 
precision approach was analyzed by Wilkinson[5] and 
Moler[6]. And it can be applied easily to various 
problems in linear algebra. The Algorithm 1 is the  
mixed precision algorithm to solve the linear system of 
equations presented in [7,8]. From this algorithm we 
can find out that the most computationally expensive 
operation, the factorization of the coefficient A, is 
performed using single precision arithmetic to take 
advantage of its higher performance. The only parts of 
operations that must be executed in double precision 
mode are the residual calculation and the iterative 
refinement of the solution. In this way that all 
operations with computational complexity of 3( )O n is 
handled in single precision, while operations performed 
in double precision are of at most 2( )O n complexity. In 
[8], Baboulin et al. also demonstrate by experiments 
that the maximum number of iterations will be no more 
than 5 when the condition number of the coefficient 
matrix A is smaller than 610 . The limitation of this 
algorithm is that the condition number of such a 
coefficient matrix  should not exceed the reciprocal of 
the accuracy of the single precision; otherwise the 
double precision algorithm should be used. 
     Dongarra et al. [9] implement the mixed-precision 
high performance LINPACK benchmark on the CELL 
processor and they also compare the performance of 
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mixed-precision Linpack with double precision one. A 
new parallel processing environment for matrix 
multiplications by using both CPUs and GPUs and a 
load balancing method for minimizing the execution 
time are proposed in [10]. Fatica at NVIDIA 
Corporation [11] accelerates HPL package by 
implementing a library to intercept the calls to 
DGEMM and DTRSM on heterogeneous clusters with 
NVIDIA GPUs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Improvement method 
 
3.1. Preliminary implementation 
 

In our preliminary implementation we simply 
convert the double precision (64-bit) operations into 
single precision (32-bit) operations and substitute the 
calls to double precision subroutines of BLAS to single 
precision one. The data structure and functions called 
to check the convergence are maintaining no change. 
Because the iterative refinement process uses double 
precision floating point operations, some data 
structures and functions should be provided with 
double precision. In our program, we define the data 
structure HPL_T_dpmat to store the double precision 
coefficient matrix A. The double precision operations 
functions such as HPL_pddmatgen are used to generate 
the double precision coefficient matrix randomly, 
HPL_ddgemv, HPL_ddgemm, HPL_ddtrsm etc. are 
used to call the subroutines in BLAS, and the 
HPL_recv_D, HPL_send_D, HPL_broadcast_D, 
HPL_all_reduce_D, HPL_sum_D, HPL_max_D etc. 
are used to communicate between processes. 
 
3.2. L triangular matrix pivoting and 
permutation matrix P storage problem 
 

HPL solves the dense linear system of equations of 
order n: 
           ; ; ,n n nAx b A R x b R×= ∈ ∈  
by first performing LU factorization with partial 
pivoting on the n by (n+1) coefficient matrix: 
              [ ] [ ], , ,P A b L U y⎡ ⎤= ⎣ ⎦  

Since the row pivoting (represented by the permutation 
matrix P) and the lower triangular factor L are applied 
to b as the factorization progresses, the solution x is 
obtained in one step by solving the upper triangular 
system U x y= .The lower triangular matrix L is 
left un-pivoted and the array of pivots is not returned. 
However, these information will be used at the 5th step 
of the Algorithm 1. Thus, we improve the HPL package 
in the following two aspects: 
1) Creating an array ipiv[] to store the row pivoting 

information in every process. 
2) Modifying the function of HPL_pdgesv0 and 

HPL_pdgesvk2 to store the row pivoting 
information and apply it to the previous columns 
of L after factoring a panel. 

 
3.3. L y P b= implementation 
 

In HPL package it only uses one function to 
implement the 1st and 2nd step of Algorithm 1. But the 
5th step of Algorithm 1 also needs the function 
Ly Pb= to be computed alone. Thus we first apply 
the row pivoting matrix generated in 3.2 to the vector b 
and then implement a function called HPL_pdtrsv_L to 
solve Ly Pb= .  

As Figure 1 shows, the operations in this function 
progress step by step on the block size of NB as 
factoring the panel does. To facilitate description, we 
assume that we are now dealing with the block kkL on 
the diagonal. First we call the function HPL_dtrsv to 
solve 'kkL y b=  and get the solution vector x. Then we 
send the solution x to the process that owns the blocks 
at the below of the block kkL so that the processes that 
receive x will call function HPL_dgemv to update their 
partial b elements. After finishing that, the updated 
partial b elements will be broadcasted along the row 
process grid, then the next block on diagonal can be 
operated in the same way until the block nnL . 

To improve the performance, we use the look-ahead 
technology in this paper to implement this function. 
After computing the block kkL , we first send the 
solution x just to the process that owns the block next 
to kkL (the block with sloping grain in Figure 1) rather 
than send it to all the process in the current column. 

   1: LU PA←                  ( )sε  
   2:solve Ly Pb=             ( )sε  
   3:solve 0Ux y=            ( )sε  
     do k = 1, 2, …….. 
   4: 1k kb Ar x −← −          ( )dε  
   5:solve kL y P r=         ( )sε  
   6:solve kU z y=            ( )sε  
   7: 1k k kx x z−← +          ( )dε  
     check convergence 

done

Algorithm 1. Mixed precision, iterative 
Refinement for Direct Solvers[5] 
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After that, this process will update its partial b elements 
and broadcast along the row process grid. After that the 
block 1 1k kL + +  on the diagonal can be computed 
while the other processes owing blocks below kkL are 
updating the partial b elements. In this way, these  two 
parts can run in parallel, the performance can be 
improved a lot. 

 
 

L

U
Lkk

 
Figure 1. The progress diagram of HPL_pdtrsv_L 

 
3.4. Iterative refinement and convergence 
checking 
 
      The iterative refinement process is implemented in 
accordance with the 4th to 7th step of Algorithm 1 that 
uses our improved functions. The convergence 
checking process is to check whether  

*/( *( )* ) 16.0AX b eps X A b N∞ ∞ ∞ + ∞− <  
(eps=1.110223e-16) is satisfied just as HPL does. The 
operations to check convergence are using 64-bit 
floating point arithmetic. 
3.5. Implementation on CPU+GPU 
heterogenous cluster platform 

 
The SGEMM and STRSM subroutines are running 

simultaneously on both GPUs and CPU cores through 
linking with the library of GotoBLAS and CUBLAS for 
their intensive computational work.  

The idea used in this work is as follows: 
The SGEMM operation: 
       C AB Cα β= +  
can be expressed as(as shown in figure 2): 
      1 2 1 2( ) ( )C AB AB C Cα β= + + +  

 
Figure 2.The green portion(left part) is performed on the GPU, 
while the red portion(right part) is performed on the CPU[11] 
 
The STRSM operation: 

( )* *op A X alpha B=  
can be expressed as (as shown in figure 3): 

1 2( )* *( )op A X alpha B B= +  

 
Figure 3.The green portion(left part) is performed on the GPU, 
while the red portion(right part) is performed on the CPU 
 
      The optimal split of the matrix size should keep the 
time consumed by the GPUs and CPUs equal and this is 
analyzed in [10,11]. 

In order to reduce the data transferring time cost  
between the host to device and device to host, we use 
the pinned memory mechanism provided by CUDA[12]. 
4. Experimental results 
 

Our experimental results consist of two parts. In the 
first part we conducted our experiments on the system 
described in Table 1. In this part we compared the 
performance of our improved CPU-only HPL (not link 
with  CUBLAS) with the typical HPL on multi-core 
platform. To be convenient, our improved HPL is 
named for MHPL.  

 
Architecture Clock 

[GHz] 
Memory 
[GB] 

BLAS HPL MPI Compiler 

AMD 
Opteron 
870 

2.0 16 Netlib* HPL-
2.0 

Mpich-
1.2.7 

gcc3.4.3 

Table 1. Hardware and software configuration of the multi-core 
system for performance experiments 
 
From Figure 4 we can find out that the speedup is 
increased along with the increase of the matrix size. 
When the size of matrix is very small the speedup can 
below 1 since the time consumed by iterative 
refinement process is nearly the same as the time to 

                                                           
* http://www.netlib.org/blas/ 
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factor the matrix. The performance is decreased due to 
the extra operations. Figure 5 also shows that MHPL 
has good scalability when the number of processes 
increase. 
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Figure 4 The speedup of MHPL over HPL when increasing 

the matrix size on CPU cluster 
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Figure 5. The performance comparison of MHPL and HPL 

with different number processes 
 
Figure 6 and Figure 7 reflect the performance impact of 
the iterative refinement process. From them we can find 
out that along with the increase of the matrix size, the 
time consumed to refine the solution decreased and can 
be ignored to some extent. 
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Figure 6. The number of iterations with the increasing of matrix 
size of MHPL 
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Figure 7. The ratio of the time consumed by iterative refinement 
process to the total execution time  of MHPL 
 
In the second part, the experimental results were 
measured on the systems described as follows: 
1. One cluster with 16 nodes, each node equipped 

with 2 Tesla C1060 GPUs and 2 Intel Xeon 
E5410(2.33GHz), with 8GB of memory. These 
nodes are connected with DDR Infiniband.  

2. One cluster with 8 nodes, each node equipped with 
4 GeForce GTX 295 GPUs and 2 Intel Xeon 
E5430(2.66GHz) with 16GB of memory. These 
nodes are connected with DDR Infiniband. 

The experiments are conducted on Linux RHEL4 
64-bit OS using GotoBLAS2-1.08 as the host BLAS 
library. The compiler and MPI version are gcc-4.1.2 
and openmpi-1.2.8 respectively, while the CUDA 
toolkit version is CUDA2.2 and the GPU driver version 
is NVIDIA x86_64 Kernel Module 190.18. In this 
paper we use GHPL to refer to this GPU accelerated  
HPL package. Each GPU is working in collaboration 
with 2 CPU cores. 
      In order to get the highest performance, we  need to 
find out the optimal division of computation between 
CPUs and GPUs. Thus, we run the program with 
different portions of matrix on GPUs to perform 
SGEMM and STRSM. And we define the split ratio of 
matrix on GPU as Rsgemm for SGEMM and Rstrsm 
for STRSM. As Figure 8 shows that different split ratio, 
especially the Rsgemm, of matrix on GPU influence the 
performance greately. And we also find out that when 
Rsgemm and Rstrsm both equal to 0.92, we can get the 
optimal performance on our platform.  
      Table 2 and 3 show the experimental performance 
results using GHPL on the platform with different 
number of GPUs. For each process grid size between 1 
and 32, we run GHPL with different size of NB 
parameter and different size of N parameter. Then we 
select the optimal results. Due to the limited host 
memory we can’t run the program on larger matrix size 
to get higher performance. But we still get the score 
that break the Teraflop barrier on both heterogeneous 
clusters. From the tables we can also find out that the 
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NB size is bigger than the one a typical CPU Linpack 
running used. The reason for this is that it controls the 
parameter K for SGEMM. From figure 9 we can find 
out that GHPL has good scalability as the number of 
process increases. Figure 10 shows that along with the 
increase of the matrix size the performance is getting 
higher and higher. Thus, we can expect our GHPL’s 
perspective performance on the cluster with larger host 
memory. Figure 11 and Figure 12 show the speedup of 
GHPL with respect to HPL for different number of 
processes on platform 1 and platform 2. Due to the 
limited host memory, the speedup is drop significantly 
as the number of processes increase. 
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Figure 8. The performance results of using different portions of 
matrix on GPU to perform SGEMM and STRSM 
 
 
T/V N NB P*Q Time(s) Gflops 
WR05R2R4 24000 1600 1 47.25 195.1 
WR05R2R4 24000 1664 2 34.09 270.4 
WR05R2R4 32000 960 4 51.74 422.2 
WR05R2R4 48000 832 8 87.01 847.4 
WR05R2R4 63360 960 16 118.52 1431 
WR05R2R4 63360 896 32 98.96 1714 
Table 2. Performance results using GHPL on platform with 
Tesla C1060 
 
T/V N NB P*Q Time(s) Gflops 
WR05R2R4 32000 1920 1 88.736 246.2 
WR05R2R4 32000 1664 2 67.28 324.7 
WR05R2R4 32000 1600 4 44.39 492.2 
WR05R2R4 48000 1152 8 83.79 880.0 
WR05R2R4 62720 1152 16 109.73 1499 
WR05R2R4 62720 1152 32 92.72 1774 
Table 3. Performance results using GHPL on platform with 
GeForce GTX 295. 
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Figure 9. GHPL performance results with different number of 
processors  
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Figure 10. The performance results of GHPL with different 
matrix sizes 
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Figure 11. The speedup of GHPL with respect to HPL on 
platform 1 
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Figure 12. The speedup of GHPL with respect to HPL on 
platform 2 
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6. Conclusions and future work 
 

In this paper, we use mixed precision algorithm to 
improve HPL package. Some experiments are 
conducted on both multi-core platform and 
CPU+GPGPU heterogeneous clusters. From our 
experimental results, we find out that the improved 
HPL which is named for GHPL has good scalability on 
all the experimental environments. On multi-core 
platform the average speedup of GHPL with reference 
to HPL is nearly 2, very close to the speed of the full 
single precision solver while delivering the same 
accuracy as the full double precision one. On the two 
CPU+GPGPU clusters, though the host memory is 
limited, the performance of GHPL can sustain more 
than 1.7Teraflops, while the average speedup of GHPL 
with respect to HPL is 3.06 and 2.40 respectively. 
      In future, we can test our GHPL program on the 
platform with large host memory so that we can obtain 
much higher performance. We can also transplant our 
program to the heterogeneous platform with ATI GPU 
by linking with ACML-GPU library. 
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